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Abstract In this paper we propose an approach to the numerical solution of one class of
optimal control problems based on the use of Newton’s method. The problem is described by
a system of ordinary differential equations. The parameters of control actions from the class
of piecewise defined functions as well as the boundaries of intervals of constancy of control
actions are to be optimized. Formulas for gradient components and Hesse matrix of the
objective functional in the space of optimized parameters are obtained. Comparative results
of computer experiments are given.
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1 Introduction

The paper studies the numerical solution of the problem of optimal control of an
object (process) described by the Cauchy problem with respect to a system of nonlinear
ordinary differential equations.

The control actions, which are piecewise continuous functions, are determined from
a parametrically specified class. The unknown parameters of these functions may differ
at different time intervals. The boundaries of time intervals and their number as well
as parameters of functions at each interval which are optimizable, are determined from
the condition of minimization of the given objective functional of the optimal control
problem.

Applied nature of the considered class of control actions is explained by the fact
that when controlling many objects (processes) it is undesirable to change frequently
the modes of functioning of both the object itself and the unit controlling it. Frequent
change of modes can lead to rapid wear of technological equipment, on the one hand,
and on the other hand, frequent change of control parameters can be simply technically
unimplementable. Technological equipment of an oil or gas field is an example of such
an object. As it is known, for the equipment for production and transportation of
hydrocarbons, frequent change of operation modes, in particular, wells, on the one
hand, is undesirable, on the other hand, the implementation of this change is associated
with technical difficulties.
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Regional power supply systems represent another object of application of the con-
sidered class of controls. The operation of this object is described by systems of a large
number of ordinary differential equations. When optimally controlling the operation
modes of power supply equipment, it is very important to ensure maximum timewise
stability of these modes, taking into account the instable, in particular, the periodical
power consumption by end users.

As a numerical method for solving the considered optimal control problem it is
proposed to use the second-order methods based on Newton’s method. It should be
noted that the numerical methods of high order of accuracy for solving various problems
of computational mathematics have become the object of both theoretical research and
their practical application [1]–[9]. An undeniable positive quality that these methods
possess is a large convergence rate, especially in cases where the initial point is close
enough to the desired solution. For some classes of computational problems these
methods are exact, i.e. they do not require iterative procedures to obtain a solution
with a given accuracy, but there are still certain problems of application of high-order
accuracy methods for solving different classes of computational problems, for example,
for finite-dimensional optimization and optimal control problems. There are two main
reasons which hold back their widespread use for solving real practical problems. The
first reason is related to the difficulty of obtaining formulas for the gradient components
and Hesse matrix of the objective function. Their difference approximations, firstly,
require a large amount of computational work of the processor, and secondly, the error
in calculating the first and second derivatives of the objective function significantly
reduce the efficiency of the high-order methods. The second problem is related to
the large amount of required computer memory, especially for numerical solution of
optimal control problems.

The class of optimal control problems considered in this paper practically does not
face these problems. This is due to the specific feature of admissible control actions,
which is as follows. The entire time interval is divided into a relatively small number
of separate subintervals, at each of which the control actions are searched in the form
of parametrically given functions whose parameters need to be optimized with respect
to the objective functional of the considered problem. The boundaries of constancy
intervals of the parameters involved in the above control functions are also optimizable.

Thus, the initial problem is reduced to finding the optimal values of the parameters
involved in the formation of control actions and the parameters defining the boundaries
of the control actions constancy intervals.

The considered problem, on the one hand, is a parametric optimal control problem,
on the other hand, it can be referred to finite-dimensional optimization problems. The
dimension of the being optimized vector of parameters in practical cases is small, rarely
reaching several tens. The number of intervals of constancy of parameters of control
functions can be both specified and determined on the basis of the necessity of their
reduction. Reducing the intervals of constancy of parameters improves the quality of
control of the object, its robustness and reliability of functioning of the object as a
whole.

For numerical solution of the control problem it is supposed to apply its finite-
dimensional approximation using methods and schemes with high approximation ac-
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curacy. For numerical solution of the obtained finite-difference control problem by
second-order optimization methods, fast differentiation technique is used to derive ex-
act formulas for the gradient and Hesse matrix [9]–[11]. The formulas for the derivatives
of the approximated functional obtained by this approach are exact because the ap-
proximation schemes we use for the direct and conjugate discrete Cauchy problems are
inter-consistent.

Special cases of the proposed approach to solving optimal control problems are
relay control problems on the class of piecewise constant functions with optimizable
switching times [12], the problems in the class of piecewise linear functions et al. Also,
note that a large class of inverse problems can be reduced to the considered problems
[13]–[15].

The results of numerical experiments presented in the paper illustrate the scheme
of the proposed approach and confirm the efficiency of its application.

2 Problem formulation

We study the numerical solving the problem of control of a dynamic process described
in general by the Cauchy problem with respect to a system of nonlinear ordinary
differential equations [16]:

ẏ(t) = f(t, y(t), u(t)), t ∈ (t0, tf ], (1)
y(t0) = y0, (2)

J(u) =

∫ tf

t0

f0(t, y(t), u(t))dt+ Φ(x(tf )) → min
u(t)∈U

. (3)

Here y(t) = (y1(t), . . . , yn(t))
⊤ is an n-dimensional vector-function which describes the

phase state of the process at time instance t, t ∈ [t0, tf ]; scalar function f0(t, y, u)
and n-dimensional vector-function f(t, y, u) = (f1(t, y, u), . . . , fn(t, y, u))

⊤ are given
and piecewise continuous with respect to first argument and twice continuously dif-
ferentiable with respect to second and third argument; u(t) = (u1(t), . . . , ur(t))

⊤ is
r-dimensional piecewise continuous vector-function which describes control actions of
the process at time instance t, t ∈ [t0, tf ]; Φ(·) is a given, twice continuously differen-
tiable function; t0, tf are given, ⊤ is transposition sign.

It is assumed that in view of technical and technological consideration function u(t)
must satisfy some certain constraints, i.e. u(t) ∈ U . In particular, we will assume that
the admissible set for u(t) is as follows

U = {u(t) ∈ Rr : ui ≤ ui(t) ≤ ui, i = 1, . . . , r, }, (4)
where ui, ui, i = 1, . . . , r are given.

The problem of controlling of the considered process consists in determining ad-
missible control u∗(t) ∈ U and corresponding vector-function y∗(t) such that the pair
(u∗(t), y∗(t)) minimizes (3), i.e. J(u∗) = minu(t)∈U J(u).

Let us assume that the being optimized control u(t) is searched in the following
parametrically given class of functions:

u(t) = λkψ(t− τk−1), t ∈ [τk−1, τk). (5)
Here τk ∈ [t0, tf ], k = 0, . . . , µ, τ0 = t0, τµ = tf , r-dimensional piecewise continuous
vector-function ψ(t) is given and its components are linearly independent; r×m matrix
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λk consists of constant parameters which determine the value of control u(t) at time
interval [τk−1, τk): λk =

∥∥λkij∥∥, i = 1, . . . , r, j = 1, . . . ,m.
Thus, the original problem (1)-(4) on determining optimal control u(t) is reduced to

finding optimal values of the elements of the matrix of parameters λk , k = 1, . . . , µ and
switching points τk, k = 1, . . . , µ − 1. The total number of the optimized parameters
is (rmµ+ µ− 1) .

It is evident that switching points must satisfy the obvious requirements:

t0 ≤ τ k−1 ≤ τk ≤ tf , k = 1, . . . , µ. (6)

A special case of the control actions of kind (5) are piecewise constant control
actions which are frequently encountered with in real life applications. In this case
m = 1, ψ1(t) ≡ 1 and parameters λk are scalar ones with the fixed values at half-
open interval [τk−1, τk). Another commonly occurring in practice cases are related to
piecewise linear in time controls when m = 2, ψ1(t) ≡ 1, ψ2(t) = t .

Let us note that functions ψ(t) themselves can be piecewise continuous ones at
half-open intervals [τk−1, τk), k = 1, . . . , µ, hence in general case controls u(t) can have
discontinuity both at t = τk, k = 1, . . . , µ − 1 and at a finite number of points at
half-open intervals [τk−1, τk), k = 1, . . . , µ.

The obtained problem (1)-(6) on finding a finite-dimensional vector ν = (λ, τ) ∈
R(mr+1)µ−1 belongs to parametric problems of optimal control of systems with lumped
parameters. Also, this problem can be viewed as a special optimization problem of
finite dimension.

It is easy to prove that the functional of the problem (1)-(4) is differentiable and
strictly convex with respect to the parameters to be optimized if the functional of the
original problem (1)-(3) is strictly convex with respect to u(t) .

A remark. For the problems of optimal control of distributed systems described
by partial differential equations, the approach considered in the paper can also be
used after pre-applying Rothe’s method on spatial variables to approximate the above-
mentioned equations [17], [18].

It is significant that the use of the considered class of control actions does not lead
to frequent change in the values of the parameters of the control actions resulting in the
increase of the stability, robustness, and reliability of the control system operation and
goes along with no essential sacrificing in the value of the objective functional attained
at an admissible optimal piecewise continuous control action u(t) .

3 An approach to numerical solution of the problem

To numerically solve the problem under consideration, we use its finite-difference ap-
proximation. Next, to solve the resulting finite-dimensional optimization problem using
second-order numerical methods, we obtain formulas for the derivatives of the objective
functional of the first and second orders in the space of optimized control action pa-
rameters ν = (λ, τ). To obtain these formulas, we will use fast differentiation technique
[9-11].

For the finite-difference approximation of the Cauchy problem (1), (2) and func-
tional (3), we apply any known formulas of a high accuracy.
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Let us divide the segment [t0, tf ] into N segments with regular points tj = t0 + jh,
j = 0, . . . , N , h = (tf − t0)/N , tN = tf . Let the j-th switching point τj belong to the
ηj-th regular half-interval: τj ∈ [tηj−1, tηj), j = 1, . . . , µ.

Let us add switching points τj, j = 1, . . . , µ − 1 to N + 1 points t0, t1, . . . , tN and
increase the number of segments to Nµ = (N + µ − 1). Let us denote the obtained
points by t0, t1, . . . , tNµ , hj−1 = tj − tj−1, j = 1, . . . , Nµ are the steps of non-uniform
partition of the segment [t0, tf ]. It is clear that tN = tNµ .

Let point τj be the χj-th point of the non-uniform partition of the segment [t0, tf ] :
tχj

= τj, j = 1, . . . , µ− 1, t0 = τ0, tN = τµ. Then hχj−1 = τj − tχj−1 = tχj
− tχj−1

and
hχj

= tχj+1 − τj = tχj+1 − tχj
.

To make further formulas less bulky let us introduce the following matrix-function
and vector-function:

λ̃(t) = λk = const, t ∈ [τk−1, τk) , k = 1, . . . , µ;

ψ̃(t) = ψ (t− τk−1) , t ∈ [τk−1, τk) , k = 1, . . . , µ.

We write the finite-dimensional approximation of problem (1), (2) as follows:

y0 = y0, yj+1 = F̂j
(
tj, y

j, λ̃(tj)ψ̃(tj)
)
= yj + hjF

(
tj, y

j, λ̃(tj)ψ̃(tj)
)
, (7)

j = 0, . . . , Nµ − 1.

In (7), n-dimensional vector-function F̂ is determined by the approximation scheme
for the Cauchy problem (1),(2). For example, for an explicit Euler method

F (tj, y
j, λ̃(tj)ψ̃(tj)) = f(tj, y

j, λ̃(tj)ψ̃(tj)). (8)

For the fourth-order Runge-Kutta method, we obtain

F (tj, y
j, λ̃(tj)ψ̃(tj)) =

1

6
(kj1 + 2kj2 + 2kj3 + kj4), (9)

kj1=f
(
tj, y

j, λ̃(tj)ψ̃(tj)
)
, kj2=f

(
tj+

hj
2
, yj+

hjk
j
1

2
, λ̃(tj)ψ̃(tj+

hj
2
)

)
,

kj3=f

(
tj+

hj
2
, yj+

hjk
j
2

2
, λ̃(tj)ψ̃(tj+

hj
2
)

)
, kj4=f

(
tj+hj, y

j+hjk
j
3, λ̃(tj)ψ̃(tj+hj)

)
,

here kj1, k
j
2, k

j
3, k

j
4 are n-dimensional vector functions of three arguments.

It is clear that virtually all numerical methods for solving systems of differential
equations can be described by (7) and it is evident that function F̂j will be different
for each of these methods.

To simplify the given formulas when approximating the functional, we use only
regular points tj, j = 0, . . . , N :

I(v) = h
N∑
j=0

σjf0

(
tj, y

j, λ̃(tj)ψ̃(tj)
)
+ Φ

(
y(tN)

)
. (10)

In particular, for values σj, j = 0, . . . , N well-known Simpson’s method of fourth
order accuracy can be used.

Taking into account the specifics of the dependencies between the phase variables
yj, j = 0, . . . , Nµ, and the optimized variables v = (λ, τ), we use fast differentiation
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technique to obtain formulas for the first and second order derivatives: ∂I(v)/∂λ,
∂I(v)/∂τ , ∂2I(v)/∂λ2, ∂2I(v)/(∂λ∂τ) , ∂2I(v)/∂τ 2.

Let us introduce the following index sets corresponding to dependencies (7)

S = {0, 1, . . . , N} , S = {0, 1, . . . , N, . . . , Nµ} ,

Syj =
{
s ∈ L : ys = F̂(·, yj, ·)

}
, j ∈ S,

Sτj =
{
s ∈ L : ys = F̂(·, τj, . . .)

}
, j = 1, . . . , µ− 1,

Sλk =
{
s ∈ L : ys = F̂(·, λkij, ·)

}
, k = 1, . . . , µ.

As it follows from the definition of the sets Syj , Sτj and Sλk , they are determined
by the indices of those variables ys, s = 0, . . . , Nµ, the values of which are directly
affected by yj, τj and λk respectively.

For example, in the case of using the Euler (8) and Runge-Kutta methods, we
obtain:

Syj = {j + 1}, Sτj = {χj − 1, χj}, Sλk = {χk, χk + 1, . . . , χk+1 − 1},
hχj−1 = τj − tχj−1, hχj

= tχj+1 − τj, j = 1, . . . , Nµ − 1.

Let us introduce the following n-dimensional vector pi

pi =
dI(v)

dyi
, i = 0, . . . , Nµ. (11)

Here the derivative is understood as total, with regard for the dependence (7), i.e.
the influence on the functional of both the values of vectors yi and vectors yj, j ∈ Syi ,
depending on yi. This implies

pi =
∂I(v)

∂yi
+
∑
j∈Syi

∂yj

∂yi
pj. (12)

Here and below, expressions for vector and matrix derivatives ∂I(v)/∂yj , ∂yj/∂yi
are understood as partial derivatives, namely the derivatives with respect to the vari-
ables explicitly involved in the dependencies. Particularly, in the case of using Euler
method (8) we obtain

pj=hjσj
∂f0
∂y

(tj, y
j, λ̃(tj)ψ̃(tj))+

(
E+hj

∂f

∂y
(tj, y

j, λ̃(tj)ψ̃(tj))

)
pj+1, j=Nµ−1, . . . , 0, (13)

pNµ = hNσN
∂f0
∂y

(tN , y
N, λ̃(tN)ψ̃(tN)) +

∂Φ

∂y
(yN). (14)

In (14) it is considered that tN = tNµ = tf .
In the case of using the Runge-Kutta method (9) to approximate (1), (2), it is easy

to see that any j = Nµ − 1, . . . , 0

pj=hjσj
∂f0
∂y

(tj, y
j, λ̃(tj)ψ̃(tj))+

(
En+

hj
6

∂kj1
∂yj

+
hj
3

∂kj2
∂yj

+
hj
3

∂kj3
∂yj

+
hj
2

∂kj4
∂yj

)
pj+1, (15)

where



10 Aida-zade K., Handzel A.V.

∂kj1
∂yj

=
∂f

∂y
(tj, y

j, λ̃(tj)ψ̃(tj)),

∂kj2
∂yj

=
∂f

∂y
(tj +

hj
2
, yj +

hjk
j
1

2
, λ̃(tj)ψ̃(tj))

[
En +

1

2

∂kj1
∂yj

]
,

∂kj3
∂yj

=
∂f

∂y
(tj +

hj
2
, yj +

hjk
j
2

2
, λ̃(tj)ψ̃(tj))

[
En +

1

2

∂kj2
∂yj

]
,

∂kj4
∂yj

=
∂f

∂y
(tj + hj,, y

j + hjk
j
3, λ̃(tj)ψ̃(tj))

[
En + hj

∂kj1
∂yj

]
,

here ∂kjs/∂y, s = 1, . . . , 4 are n-dimensional square matrix functions, En is an n-
dimensional unit square matrix.

It is clear that if some other different method is applied to solve the Cauchy problem
(1)–(2), other specific formulas will be obtained from (12) that do not coincide with
(13), (15).

Then from (7), (9), (15) we obtain:

pNµ = hNσN
∂f0
∂y

(tN , y
N , λ̃(tN)ψ̃(tN)) +

∂Φ

∂y
(yN). (16)

It is evident that condition (16) for the adjoint system at the right end of time
interval for the case of using the Runge-Kutta method coincides with condition (14)
obtained when applying Euler’s method.

Then the following formulas hold for the components of the gradient of the func-
tional I(ν):

dI(v)

dλk
=

∂I(v)

∂λk
+
∑
s∈Sβk

∂ys

∂λk
dI(v)

dys
=
∂I(v)

∂λk
+

χk+1−1∑
s=χk

∂ys

∂λk
ps, k = 1, . . . , µ, (17)

dI(v)

dτk
=

∂I(v)

∂τk
+
∑
s∈Sτk

n∑
ν=1

∂ys

∂τk

dI(v)

dys

=
n∑

ν=1

[
(τk − tχk−1

)pχk−1
ν − (tχk

− τk)p
χk
ν

]
, k = 1, . . . , µ− 1. (18)

In (17), the derivatives ∂yks/∂λk, ∂I(ν)/∂λk are determined by the approximation
schemes of problem (1), (2) and functional (3). Since only regular points ti, i =
1, . . . , Nµ, are used when approximating the functional (3) then ∂I(v)/∂τk = 0 in (18).

Let us consider obtaining calculation formulas for the elements of the matrix
d2I(v)/dλ2:

d

dλk2

(
dI(v)

dλk1

)
=

∂

∂λk2

(
dI(v)

dλk1

)
+
∑

s2∈Sλk2

∂ys2

∂λk2
d2I(v)

dλk1dys2
, k1, k2 = 1, . . . , µ− 1,

∂

∂λk2

(
dI(v)

dλk1

)
=

∂2I(ν)

∂λk2∂λk1
+

∑
s1∈Sλk1

∩S
λk2

∂2ys1

∂λk1∂λk2
dI(v)

dys1
+
∑

s1∈Sλk1

∂ys1

∂λk1
∂

∂λk2
dI(v)

dys1
,

d2I(v)

dλk1dys2
=

∂

∂λk1
dI(v)

dys2
+
∑

s3∈Sλk2

∂ys3

∂λk1
d2I(v)

dys2dys3
.
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Finally, for the elements of the matrix d2I(v)/dλ2 we obtain:

d2I(v)

dλk1dλk2
=

∂2I(v)

∂λk2∂λk1
+

∑
s1∈Sλk1

∂2ys1

∂λk1∂λk2
dI(v)

dys1
+

∑
s1∈Sλk1

∂ys1

∂λk1
∂

∂λk2
dI(v)

dys1

+
∑

s2∈Sλk2

∂ys2

∂λk2
∂

∂λk1
dI(v)

dys2
+

∑
s2∈Sλk2

∑
s3∈Sλk1

∂ys2

∂λk2
∂ys3

∂λk1
d2I(v)

dys2dys3
. (19)

As can be seen from (19), when calculating matrix d2I(v)/dλ2, it is required to
calculate matrices ∂(dI(v)/dy)/∂λ and d2I(v)/dy2. Let us derive recurrent formulas
for these matrices. Let us introduce the matrices:

Agq =
d2I(v)

dygdyq
, Bkg =

∂

∂λk
dI(v)

dyg
, g, q = 1, . . . , Nµ, k = 1, . . . , µ.

It is clear that d2I(v)

dygdyq
=

∂

∂yg
dI(v)

dyq
+
∑
i∈Syg

∂yi

∂yg
d2I(v)

dyidyq
.

For the elements of matrix A we obtain recurrent relations:

Agq =
∂

∂yg
dI(v)

dyq
+
∑
i∈Syν

∂yi

∂yg
Aiq.

Let us introduce similar relations for matrix ∂(dI(v)/dy)/∂y. Let us denote:

Cgq =
∂

∂yg
dI(v)

dyq
=

∂

∂yg

(
∂I(v)

∂yq
+
∑
i∈Sxq

∂yi

∂yq
dI(v)

dyi

)

=
∂2I(v)

∂yg∂yq
+

∑
i∈Syq∩Syg

∂2yi

∂yg∂yq
dI(v)

dyi
+
∑
i∈Syq

∂yi

∂yq
∂

∂yg
dI(v)

dyi

=
∂2I(v)

∂yg∂yq
+

∑
i∈Syq∩Syg

∂2yi

∂yg∂yq
dI(v)

dyi
+
∑
i∈Syq

∂yi

∂yq
Cgi.

Finally, we introduce recurrent relations for the matrix B:

Bkg =
∂

∂λk
dI(v)

dyg
=

∂

∂λk

∂I(v)
∂yg

+
n∑

s∈Syg

∂ys

∂yg
dI(v)

dys


=

∂2I(v)

∂λk∂yg
+

∑
s∈Syg∩Sλk

∂2ys

∂λk∂yg
dI(v)

dys
+
∑
s∈Syg

∂ys

∂yg
∂

∂λk
dI(v)

dys

=
∂2I(v)

∂λk∂yg
+

∑
s∈Syg∩Sλk

∂2ys

∂λk∂yg
dI(v)

dys
+
∑
s∈Syg

∂ys

∂yg
Cks.

Using the obtained recurrent relations, we calculate the matrices A, C, B, and then
matrix d2I(v)/dλ2.

The matrices d2I(v)/dτdλ and d2I(v)/dτ 2 are calculated in a similar way.
Formulas (11)-(18) make it possible to use various types of efficient methods of first

order finite-dimensional optimization to solve the approximated problem (5), (7), (10).
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Furthermore, if the formulas for Hesse matrix are obtained then second-order methods
can be applied.

It is essential that given formulas are accurate and consistent with the used schemes
of methods for finite-dimensional approximation of Cauchy problems with respect to
direct and adjoint systems of differential equations obtained in the continuous case.
For example, conditions (14), (16) are more accurate in comparison with the frequently
used formula of approximation of the condition for the adjoint variable by the formula
pN = ∂Φ(y(tNµ))/∂y [11, 17, 18].

4 Optimization of the number of subintervals

As it is known, frequent switching of operation modes is undesirable for real control
systems of technical objects and technological processes. Frequent switching of control
modes reduces reliability, robustness of control, worsens the characteristics of the con-
trolled object. Therefore, it is important to determine such a wise number of switching
of control modes, at which the increase of this number does not lead to a significant
decrease in the main control criterion.

Let (v∗(t), y∗(t)) be the optimal pair, which is a solution of the problem (1)-(4)
under piecewise continuous control u(t) , at which objective functional (3) attains
minimal value J∗ = minu J(u).

It is obvious that the optimal value of the objective functional on the class of
piecewise defined functions (5) depends on µ, the number of subintervals of constancy
of parameters of control actions, and it is clear that the following relation holds J∗ ≤
J∗
µ1
(ν) ≤ J∗

µ2
(ν) if µ2 < µ1, and the following condition is satisfied (see Fig. 1).

J∗ = lim
µ→∞

J∗
µ(ν). (20)

Due to the differentiability of objective functional (10), it is easy to show that for
an arbitrary positive value ε there is µ∗, such that the following condition holds:

J∗
µ(ν)− J∗ ≤ ε for µ ≥ µ∗. (21)

The value of ε is determined from practical considerations. To find the appropriate
minimum number µε, at which the condition (21) is satisfied, one can use efficient
methods of one-dimensional search (the method of the golden section, dichotomy, etc.).

After solving the problem (1)-(4) with a given value of the number of subintervals
µ, the number of switching of control parameters can be reduced by decreasing the
number of subintervals. For this purpose, the following two methods are used.

If for any subinterval its length is less than given value ετ
|τs − τs−1| ≤ ετ , (22)

then subinterval [τs−1, τs) is ignored and merged with the previous subinterval [τs−2, τs−1).
If all control parameters on any s-th subinterval differ from the parameters of the

(s− 1)-th subinterval by an amount smaller than the specified value ελ, i.e.

|λsij − λs−1
ij | ≤ ελ, i = 1, . . . , r, j = 1, . . . ,m, (23)

then, as suggested above, subinterval [τs−1, τs) is merged with subinterval [τs−2, τs−1).
The application of the above procedure for reducing the number of subintervals will be
illustrated in the next section by an example of solving a test problem.
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Figure 1: Diagram of J∗
µ(ν) with respect

to µ.
Figure 2: Initial phase trajectory and con-
trol action (case 5)

Figure 3: Initial phase trajectory and con-
trol action (case 6)

Figure 4: Optimal phase trajectory and
control action (case 6)

5 Results of computer experiments
Computer experiments were conducted to numerically analyze the approach described
in this paper for applying second-order methods to solve optimal control problems.
The following non-linear problem was used as a test problem [19]–[21]:

ẏ1(t) = y2(t), ẏ2(t) = u(t)− sin y1(t), t ∈ (0, 5],

y1(0) = 5, y2(0) = 0,

J(u) = y21(5) + y21(5) → min, |u(t)| ≤ 1.

The control is searched among piecewise constant functions with optimizable switching
points. In [19]-[21], the optimal solutions obtained by means of various numerical
methods are presented. In spite of the fact that the exact solution of this non-linear
problem is unknown, the solutions obtained in these works are close enough to each
other and they can be considered close to the optimal one.

When solving the direct and adjoint Cauchy problems, the Runge-Kutta method
of the fourth order was used, the integration step was chosen equal to h = 0.01 .

In the numerical solution, different initial values of optimization parameters were
used to start the iterative process. The results of the problem solution obtained by the
authors are highlighted bold in Tabs. 1 and 2 (non-bold values are taken from [20]).

In the computer experiments, the number of subintervals µ was taken equal to two
and four. The tables show the comparative results obtained by the approach proposed
in the paper and the results obtained in [20]. In order to reasonably compare the
values of the objective functional, the Cauchy problems were additionally solved using
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Table 1: Numerical results of solving test problem for initial number of switchings set
to 2. Case

(
τ0, λ0

)
(τ∗, λ∗) I∗

1

0.982, 4.550, 11.9080.780, 3.460, 1.0, -1.0, 1.0
0.70, -0.60, 0.50 0.950, 4.511, 11.9621.0, -1.0, 1.0

2

0.982, 4.550, 11.9080.780, 3.460, 1.0, -1.0, 1.0
2.00, -2.00, 0.50 0.950, 4.501, 11.9671.0, -1.0, 1.0

3

0.982, 4.550, 11.9080.520, 2.730, 1.0, -1.0, 1.0
0.80, -0.80, 0.40 0.950, 4.528, 11.9441.0, -1.0, 1.0

4

0.982, 4.550, 11.9080.280, 3.260, 1.0, -1.0, 1.0
0.26, -0.40, 0.32 0.950, 4.512, 11.9611.0, -1.0, 1.0

Table 2: Numerical results of solving test problem for initial number of switchings set
to 4. Case

(
τ0, λ0

)
(τ∗, λ∗) I∗

5

0.561, 0.982, 2.156, 4.550, 11.9080.62, 0.78, 2.26, 3.76, 1.00, 1.00, -1.00, -1.00, 1.00
0.4, 0.5, -0.6, -0.8, 0.8 0.949, 0.950, 1.858, 4.512, 11.9611.00, 0.584, -1.00, -1.00, 1.00

6

10−17, 0.982, 0.982, 4.550, 11.9080.11, 0.76, 0.81, 4.76, 0.45, 1.00, -0.687, -1.00, 1.00
0.45, 0.85, -0.7, -0.8, 0.8 0.950, 0.950, 0.950, 4.509, 11.9611.00, 0.835, -0.657, -1.00, 1.00

Table 3: Numerical results of solving test problem when the number of switching points
is less than 2. −(1) – no switching points.

Case Number of switching points
(
τ0, λ0

)
(τ∗, λ∗) I∗

7 0 -(1), 0.00 -(1), -1.00 21.80
8 0 -(1), +1.00 -(1), -1.00 21.80
9 1 2.50, +1.00, -1.00 0.00; +1.00; -1.00 21.80
10 1 2.50, -1.00, +1.00 5.00; -1.00; +1.00 21.80
11 1 2.50, 00.00, 00.00 0.00; -0.61; -1.00 21.80

optimal parameters given in [20] (the Runge-Kutta method with step h = 0.01 was
used for this purpose).

Figs. 2-4 show the plots of initial and obtained controls, as well as the plots of phase
trajectories at initial and obtained control.

When analyzing the numerical results, we see at once that the values of the obtained
control actions and objective functional are the same for all the four cases 1-4 when
the number of switchings is two (see Tab. 1).

For the case of four initial switchings, it is easy to check that the solutions for both
cases 5 and 6 can be converted to the results shown in Tab. 1 in view of the reasonings
considered in Sec. 3. In case 5, we can apply condition (23) and merge subintervals
[0, 0.561] with [0.561, 0.982] and [0.982, 2.156] with [2.156, 4.550]. In case 6, condition
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(22) can be used and we can delete two “microscopic” subintervals where control action
is equal to 0.450 and −0.687 (see Tab. 2 and Fig. 4). After doing that we obtain the
solutions which are the same as given for cases 1-4.

To analyze the influence of the number of switching points of control action, addi-
tional numerical experiments were carried out: with no switching points (cases 7, 8)
and with one switching point (cases 9, 10, 11). The results are shown in Tab. 3.

If the solution is searched in the class of constant functions then optimal value of
control action is −1. If the number of switching instances is one, then actually the same
result is obtained. In case 9, we observe a needle-shaped value λ = 1 at the starting
time instance t = 0, and then the value of λ is set to −1 till the end of the time interval.
In case 10, a needle-shaped value λ = 1 is observed at the end time instance t = 5,
while the value of λ is set to −1 at the whole interval with the exception for the last
point t = 5. As for case 11, its solution is in effect identical to that for case 9. The only
difference is in the value of the needle-shaped control action, in this case λ = −0.61

Summing up, the solutions obtained by the proposed method gave a value of the
objective functional lesser than in [20], which is the result of more accurate finding of
the values of the switching times.

Conclusion
The paper proposes to use second-order optimization methods for numerical solution
of one class of optimal control problems. The specific feature of the considered class
of problems is as follows. The time interval considered in the problem is divided into
subintervals, at each of which the control actions are represented as a linear combination
of the given basis functions. The parameters to be optimized are 1) the coefficients at
the basis functions at each subinterval and 2) the subinterva1s’ boundaries (i.e., the
switching times of the control parameters).

The formulas of the first and second order derivatives of the objective functional
with respect to the parameters to be optimized are obtained in the paper. This allows
us to use efficient numerical methods of Newtonian type optimization. Due to the
specific features of the used class of control actions, the dimension of the optimized
vector is small even for practical problems.

The paper presents an algorithm for determining the number of subintervals at
which the control of the process is robust and efficient. The results of computer exper-
iments for a known test problem are given.
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