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INVERSE PROBLEM OF DETERMINING THE KERNEL
IN THE INTEGRO-DIFFERENTIAL BEAM VIBRATION EQUATION

Durdiev U. D.

Abstract This paper addresses the problem of identifying the kernel that represents the
memory of the medium in the integro-differential equation governing the forced vibrations of
a beam. The problem is reduced to integral equations of the second kind of Volterra type with
respect to the solution of the direct problem and the unknown kernel of the inverse problem.
To solve these equations, we apply the method of compressive mappings in the space of con-
tinuous functions with exponential weight norm. The global solvability of the inverse problem
and the conditional stability of the solution are established. In addition, the paper introduces
an efficient numerical approach for solving the inverse problem associated with the beam
equation. The method leverages the finite difference method to obtain solutions for both the
displacement field u(x, t) and the media viscosity coefficient k(t), with the latter expressed in
terms of an integral. Rigorous algorithmic development ensures accurate numerical solutions,
which are validated through comparison with analytical solutions, demonstrating a high level
of agreement. Furthermore, the proposed scheme is evaluated under noisy conditions, where
it exhibits robustness in reducing numerical fluctuations over time. This comprehensive study
highlights the reliability and effectiveness of the developed numerical approach, positioning it
as a valuable tool for tackling inverse problems in structural mechanics and related fields.
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1 Introduction

Many problems involving the vibrations of rods, beams, and plates have significant
applications in structural design, stability theory of rotating shafts, vibration theory of
ships, and pipelines. These problems are typically described by differential equations
of orders higher than the second [1], [2].

There has been a recent surge in interest regarding the study of direct and inverse
problems for the vibration equation of a beam [3]–[16]. Paper [3] analyses publications
and results on the dynamic behaviour of in-homogeneous beams and rods, based on
foreign press materials. Direct problems with different initial and boundary conditions
are investigated for the beam vibration equation in papers [4]–[7] and inverse prob-
lems for finding the coefficient are studied for them. In Paper [8], authors study the
solvability of the initial boundary value problem for the general Euler-Bernoulli beam
equation including also moving point loads. The numerical solutions of the beam vi-
bration equation are given in [9]–[16]. In [15], an analytical solution of the differential
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equation of transverse vibrations of a piece-wise homogeneous beam in the frequency
domain was obtained for various boundary conditions.

The study of inverse problems is a phenomenon that has both a long and recent
history. Inverse problems in mathematical physics have been studied for many classes
of differential equations. The monograph [17] focuses on inverse problems associated
with the simplest equations of hyperbolic type. Methods for solving inverse dynam-
ical problems, including proving local existence and singularity theorems, as well as
numerical approaches to finding solutions, have been explored in various sources, such
as [18]–[31].

2 Mathematical formulation of the inverse problem

We consider an inverse problem of determining the unknown kernel k(t) and the trans-
verse bending vibrations u(x, t) of a homogeneous beam of length l that satisfy the
fourth-order partial differential equation

utt + a2uxxxx =

t∫
0

k(τ)u(x, t− τ)dτ + f(x, t), (x, t) ∈ (0, l)× (0, T ] =: D (1)

with the initial contions

u
∣∣
t=0

= φ(x), ut
∣∣
t=0

= ψ(x), x ∈ [0, l] (2)

and boundary conditions

u(0, t) = uxx(0, t) = u(l, t) = uxx(l, t) = 0, t ∈ [0, T ]. (3)

In the direct problem, it is required to determine the function

u(x, t) ∈ C4,2
x,t (D) ∩ C2,1

x,t (D), (4)

satisfying relations (1)–(3) with the known positive numbers a, l, T , and sufficiently
smooth functions φ(x), ψ(x), k(t), f(x, t).

Inverse problem. Find the unknown kernel k(t), if the following additional infor-
mation about the solution of the direct problem (1)–(3) is available:

u(x0, t) = g(t), x0 ∈ (0, l), t ∈ [0, T ], (5)

where the function g(t) is known.
We assume that the data of the problem (1)–(5) satisfy the following conditions:

(A1) φ(x) ∈ C7[0, l], φ(j)(0) = φ(j)(l) = 0, j = 0, 2, 4, 6,

(A2) ψ(x) ∈ C5[0, l], ψ(j)(0) = ψ(j)(l) = 0, j = 0, 2, 4,

(A3) f(x, t) ∈ C3,1
x,t (D), f(0, t) = f(l, t) = f ′′

xx(0, t) = f ′′
xx(l, t) = 0, 0 ⩽ t ⩽ T,

(A4) g(t) ∈ C3[0, T ], g(0) = φ(x0) ̸= 0, g′(0) = ψ(x0), g′′(0) = f(x0, 0)− a2φ4(x0).

Let u(x, t) be the solution of the direct problem (1)–(4). Introducing the notation
v(x, t) = ut(x, t) and differentiating (1), (3) by t, we have

vtt + a2vxxxx = k(t)φ(x) +

t∫
0

k(τ)v(x, t− τ)dτ + F (x, t), (6)
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where F (x, t) = ft(x, t), boundary conditions
v(0, t) = vxx(0, t) = v(l, t) = vxx(l, t) = 0, 0 ⩽ t ⩽ T. (7)

The initial conditions are easily obtained from (2) and equation (1) at t = 0:
v
∣∣
t=0

= ψ(x), vt
∣∣
t=0

= f(x, 0)− a2φ(4)(x) := ϕ(x), x ∈ [0, l]. (8)
The additional condition for the function v, as follows from (5), takes the form

v(x0, t) = g′(t), x0 ∈ (0, l), t ∈ [0, T ]. (9)
Thus, the inverse problem (1)–(4) is reduced to the problem of determining the same
function k(t) from equation (6), when the solution of this equation satisfies the equa-
tions (7)–(9). It is easy to see that if the matching conditions φ(0) = φ′′(0) = φ(l) =
φ′′(l) = 0, ψ(0) = ψ′′(0) = ψ(l) = ψ′′(l) = 0, φ(x0) = g(0), ψ(x0) = g′(0), the inverse
transformations are also true.

2.1 Study of the direct problem (6)–(8)
The solution of the direct problem (6)–(8) will be found in the following form

v(x, t) =
∞∑
n=1

vn(t)Xn(x), (10)

where X(x) is the solution to the following problem:
X(4)(x) + λX(x) = 0, 0 < x < l, X(0) = X ′′(0) = X(l) = X ′′(l) = 0.

Solving this problem we get

Xn(x) =

√
2

l
sinµnx, λn = −µ4

n = −
(πn
l

)4
,

vn(t) =

√
2

l

l∫
0

v(x, t) sinµnxdx, n = 1, 2, . . . .

Formally, from (10) by term-by-term differentiation we compose the series

vtt =
∞∑
n=1

v′′n(t)Xn(x), (11)

vxxxx =
∞∑
n=1

vn(t)X
(4)
n (x) =

∞∑
n=1

µ4
nvn(t)Xn(x). (12)

Applying the formal scheme of the Fourier method and using (6), (7), we obtain

v′′n(t) + a2µ4
nvn(t) = k(t)φn +

t∫
0

k(τ)vn(t− τ)dτ + Fn(t), 0 < t ⩽ T, (13)

vn(0) = ψn, v′n(0) = ϕn, n = 1, 2, . . . , (14)

where

φn =

l∫
0

φ(x)Xn(x)dx, ψn =

l∫
0

ψ(x)Xn(x)dx, ϕn =

l∫
0

ϕ(x)Xn(x)dx,
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Fn(t) =

l∫
0

F (x, t)Xn(x)dx. (15)

Using the method of [4], we present the solution of the problem (13), (14) as an
integral equation

vn(t) = v0n(t) +

t∫
0

Kn(t, τ)vn(τ)dτ, (16)

where

v0n(t) =

(
ψn cos aµ

2
nt−

ϕn

aµ2
n

sin aµ2
nt

)
+

1

aµ2
n

t∫
0

(
φnk(s)+Fn(s)

)
sin aµ2

n(t−s)ds, (17)

Kn(t, τ) =
1

aµ2
n

t∫
τ

k(s− τ) sin aµ2
n(t− s)ds. (18)

Theorem 2.1. If there exists a function v(x, t) satisfying relations (6)–(8), then it is
unique.

Based on the completeness of the system Xn(x) in the space L2(0, l) we can prove
the uniqueness of the solution of the problem (6)–(8). Indeed, let there exist distinct
functions v1(x, t) and v2(x, t) – solutions to this problem. Then their difference v(x, t) =
v1(x, t)− v2(x, t) is the solution of the homogeneous problem (6)–(8), where φ(x) ≡ 0,
ψ(x) ≡ 0, F (x, t) ≡ 0, ϕ(x) = 0, then φn ≡ 0, ψn ≡ 0, Fn(t) ≡ 0, ϕn ≡ 0 and from
(16) we obtain vn ≡ 0, since vn is a solution to the homogeneous equation:

vn(t) =

t∫
0

Kn(t, τ)vn(τ)dτ

which is equivalent to the equality
l∫

0

v(x, t)Xn(x)dx = 0.

By virtue of the completeness of the system Xn(x) in the space L2(0, l), the function
v(x, t) = 0 is almost everywhere in [0, l] and at any t ∈ [0, T ]. Since the function v is
from the class of functions given in condition (4), v is continuous on D, then v(x, t) ≡ 0
on D. Thus, the uniqueness of the solution of the problem (6)–(8) is proved.

For each fixed n, the equation (16) is a Volterra integral equation of the second
kind with respect to vn. According to the general theory of integral equations, under
proper conditions on the functions φ(x), ψ(x), k(t), f(x, t) it has a unique solution.
The solution of this integral equation can be found by the method of successive ap-
proximations.

Further, from (17) and (18) the estimates

|v0n(t)| ⩽ |ψn|+
1

aµ2
n

|ϕn|+
∥k∥T
aµ2

n

|φn|+
T

aµ2
n

∥Fn∥ =: Cn

and
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|Kn(t, τ)| ⩽
∥k∥(t− τ)

aµ2
n

, (t, τ) ∈ ◁(T ) = {0 ⩽ τ ⩽ t ⩽ T}

follow, where ∥k∥ = max
t∈[0,T ]

|k(t)|, ∥Fn∥ = max
t∈[0,T ]

|Fn(t)|. Taking them into account, from

(16) we get

|vn(t)| ⩽ Cn +
∥k∥
aµ2

n

t∫
0

|vn(τ)|(t− τ)dτ.

Hence, by virtue of Gronwall’s inequality, we can conclude that the solution v(t)
satisfies:

|vn(t)| ⩽ Cn exp

{
∥k∥T 2

2aµ2
n

}
, t ∈ [0, T ], n = 1, 2, . . . . (19)

Using (13) and (19), we obtain an estimate for v′′n(t):

|v′′n(t)| ⩽ |φn|∥k∥+ ∥Fn∥+ Cn

(
∥k∥T + a2µ4

n

)
exp

{
∥k∥T 2

2aµ2
n

}
.

Thus, the following statement is true:

Lemma 2.1. For any t ∈ [0, T ] the following estimates

|vn(t)| ⩽ C1

(
|ψn|+

1

n2
|ϕn|+

1

n2
|φn|+

1

n2
∥Fn∥

)
, (20)

|v′′n(t)| ⩽ C2

(
n4|ψn|+ n2|ϕn|+ n2|φn|+ n2∥Fn∥

)
, (21)

are valid, where Ci, i = 1, 2 are positive constants depending on T , l and ∥k∥.

The series (10), (11) and (12) for any (x, t) ∈ D based on Lemma 2.1 are majorized
by the series

C3

∞∑
n=1

(
n4|ψn|+ n2|ϕn|+ n2|φn|+ n2∥Fn∥

)
, (22)

where C3 > 0 depends on a, T , l and ∥k∥.

Since ϕn = fn − a2φ
(4)
n , where fn =

l∫
0

f(x, 0)Xn(x)dx, φ
(4)
n =

l∫
0

φ(4)(x)Xn(x)dx,

then |ϕn| ⩽ |fn|+a2|φ(4)
n |. Hence, the numerical series (22) can be estimated as follows

C ′
3

∞∑
n=1

(
n4|ψn|+ n2

(
|φn|+ |φ(4)

n |
)
+ n2|fn|+ n2∥Fn∥

)
. (23)

Lemma 2.2. Under the conditions (A1)-(A3), one has the relations

ψn =
1

µ5
n

ψ(5)
n , φn = − 1

µ3
n

φ(3)
n , φ(4)

n = − 1

µ3
n

φ(7)
n , Fn(t) = − 1

µ3
n

F (3)
n (t), (24)

where

ψ(5)
n =

√
2

l

l∫
0

ψ(5)(x) cosµnxdx, φ(3)
n =

√
2

l

l∫
0

φ(3)(x) cosµnxdx,

φ(7)
n =

√
2

l

l∫
0

φ(7)(x) cosµnxdx, F (3)
n (t) =

√
2

l

l∫
0

Fxxx(x, t) cosµnxdx
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with the estimates
∞∑
n=1

|ψ(5)
n |2 ⩽ ∥ψ(5)(x)∥L2[0,l],

∞∑
n=1

|φ(3)
n |2 ⩽ ∥φ(3)(x)∥L2[0,l]

∞∑
n=1

∣∣φ(7)
n

∣∣2 ⩽ ∥∥φ(7)(x)
∥∥
L2[0,l]

,

∞∑
n=1

|F (3)
n (t)|2 ⩽ ∥Fxxx(x, t)∥C([0,T ],L2[0,l]). (25)

We integrate Equation (16) by parts several times: the integral having integrate
functions φ(x), φ(4)(x) and f(x, t) - three times, the integral having integrate functions
ψ(x) - five times. Given the conditions of Lemma 2.2, we obtain the equalities (24).
Inequality (25) is the Bessel inequality for the coefficients of the Fourier expansions of
the functions ψ(5)

n , φ(3)
n , φ(7)

n , and F
(3)
n (t) in the cosine system {

√
2/l cosµnx} on the

interval [0, l].
Note that if the conditions of Lemma 2.2 are fulfilled, the series in (23) converge.

Let us show this for the first series, for the other series it is quite similar. Indeed, using
(24) and the Cauchy-Bunyakovsky inequality, we have

∞∑
n=1

n4|ψn| =
(
l

π

)5 ∞∑
n=1

1

n
|ψ(5)

n | ≤
(
l

π

)5

√√√√ ∞∑
n=1

1

n2

√√√√ ∞∑
n=1

|ψ(5)
n |2,

Hence, according to the second inequality in (25), the convergence of the numerical

series follows
∞∑
n=1

n4|ψn|.

If the functions φ(x), ψ(x) and f(x, t) satisfy the conditions of Lemma 2.2, then,
due to of (24) and (25), the series in (23) converge, and consequently the series (10),
(11) and (12) converge absolutely and uniformly in D. Thus, the sum of the series (10)
satisfies the relations (6)-(8).

Thus, we have proven the following statement.

Theorem 2.2. Let k(t) ∈ C[0, T ]. If the functions φ(x), ψ(x) and f(x, t) satisfy
the conditions (A1)-(A3), then there exists a unique classical solution to the problem
(6)-(8).

It is clear that, based on the found function v(x, t), the solution to the problem
(1)–(3) is determined by the formula

u(x, t) = φ(x) +

t∫
0

v(x, τ)dτ.

Now we will prove the following statement, which will be used in the study of the
inverse problem.

Lemma 2.3. Let vn and ṽn be two solutions of equation (16) corresponding to different
k, k̃, with the same data φ, ϕ, ψ and f . Then the following estimate holds:

|vn(t)− ṽn(t)| ⩽ dn∥k − k̃∥, t ∈ [0, T ], (26)
where

dn :=
1

aµ2
n

[
(1 + T 2C1)|ψn|+

1

n2
|ϕn|+

1

n2
|φn|+

1

n2
∥Fn∥

]
exp

{
∥k∥T 2

2aµ2
1

}
.
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Proof. Since vn, ṽn are two solutions of equation (16), corresponding to the functions
k, k̃, then for the modulus of the difference of these functions the following estimate
holds:

|vn(t)− ṽn(t)| ⩽
1

aµ2
n

|φn|
∫ t

0

∣∣∣k(τ)− k̃(τ)
∣∣∣ dτ

+
1

aµ2
n

t∫
0

t∫
τ

[
|k(s− τ)(vn(τ)− ṽn(τ))|+

∣∣∣ṽn(τ)(k(s− τ)− k̃(s− τ)
∣∣∣] dsdτ.

Estimating each term on the right-hand side of this inequality and using formula (20),
we obtain

|vn(t)− ṽn(t)| ⩽
1

aµ2
n

[
(1 + T 2C1)|ψn|+

1

n2
|ϕn|+

1

n2
|φn|+

1

n2
∥Fn∥

]
∥k − k̃∥

+
∥k∥T
aµ2

n

t∫
0

|vn(τ)− ṽn(τ)| dτ.

From the last inequality, according to Gronoull’s lemma, the estimate (26) follows.

2.2 Study of the inverse problem

The main finding of this paper is the following:

Theorem 2.3. If the conditions(A1)-(A4) are satisfied, then for any T > 0 on the
interval [0, T ] there exists a unique solution to the inverse problem (6)–(9) of the class
k(t) ∈ C[0, T ].

Proof. Putting in (10) x = x0, using (16) and using the additional condition (9),
obtained by differentiating twice by t and after some simple transformations, we obtain
the following integral equation with respect to k(t):

k(t) = k0(t) +

t∫
0

R(t− τ)k(τ)dτ, (27)

where

k0(t) = φ−1(x0)

[
g(3)(t) +

√
2

l

∞∑
n=1

[
ψna

2µ4
n cos aµ

2
nt− a3µ4

nφ
(4)
n sin aµ2

nt

− Fn(t) + aµ2
n

t∫
0

Fn(s) sin aµ
2
n(t− s)ds+ µ2

nφn

(
1− cos aµ2

nt
) ]

sinµnx0

]
,

R(t− τ) = −φ−1(x0)

[
g′(t− τ)− a

√
2

l

∞∑
n=1

µ2
n

t∫
τ

vn(s− τ) sin aµ2
n(t− s)ds sinµnx0

]
.

The solution of integral equation (16) depends on k(t). Therefore, in the future, we
will put vn = vn(t; k) in R(t− τ).
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We introduce the operator A, defining it on the right-hand side (27). Then, the
equation (27) is rewritten in a more compact form:

k(t) = A[k](t). (28)

Let us denote by Cρ[0, T ] the space of continuous functions with finite norm

∥k∥ρ = max
t∈[0,T ]

∣∣k(t)e−ρt
∣∣ , (29)

ρ > 0 is some fixed number. Due to the fact that e−ρT∥k∥ ⩽ ∥k∥ρ ⩽ ∥k∥ the norms
∥k∥ρ and ∥k∥ are equivalent for any fixed T ∈ (0,∞). We will choose the number ρ
later. Let

Sρ(k0, α) := {k(t) : k(t) ∈ C[0, T ], ∥k − k0∥ρ ⩽ α} .
It is not difficult to see that for k ∈ Sρ(k0, α) there is an estimate of

∥k∥ρ ⩽ ∥k0∥ρ + α ⩽ ∥k0∥+ α := α0, (30)

so α0 is a known number.
Further, it can be demonstrated that for a suitable choice of ρ > 0 the operator A

realizes contracted mapping of the ball Sρ(k0, α) onto itself; i.e., the condition k(t) ∈
Sρ(k0, α) implies that A[k](t) ∈ Sρ(k0, α) and A compresses the distance between any
elements

{
k(t), k̃(t)

}
∈ Sρ(k0, α).

Indeed, based on (28)-(30) and (26), after some calculations we have estimates

∥A[k](t)− k0(t)∥ρ = max
t∈[0,T ]

∣∣∣∣∣
t∫

0

R(t− τ)k(τ)e−ρτe−ρ(t−τ)dτ

∣∣∣∣∣
⩽

1

φ(x0)

[
∥g′∥T +

aT 2

2

√
2

l

∞∑
n=1

µ2
nCn exp

{
α0T

2

2aµ2
1

}]
α0

ρ
=:

1

ρ
β1;

∥A[k](t)− A[k̃](t)∥ρ = max
t∈[0,T ]

∣∣∣(A[k](t)− A[k̃](t)
)
e−ρt

∣∣∣
⩽

1

|φ(x0)|

[
∥g′∥T +

aT 2

√
2l

∞∑
n=1

µ2
n

[
dnα0 + Cn exp

{
α0T

2

2aµ2
1

}]]
∥k − k̃∥ρ

ρ
=:

β2
ρ
∥k− k̃∥ρ.

In these inequalities, we have also estimated in Cn and dn the norm ∥k∥ by α0

according to (30). Note that all numerical series in them, taking into account the
conditions of Theorem 2.3, are convergent.

Thus, as follows from the above estimates, if the number ρ is chosen from the
condition ρ > max{α−1β1, β2}, then the operator A is contractive on Sρ(k0, α). In
this case, according to Banach’s principle, the equation (28) has a unique solution in
Sρ(k0, α) for any fixed T > 0.

3 Numerical procedure
We divide the interval (0, l) into discrete points using a total of Nx discretization points.
The spatial step size is defined as ∆x = l

Nx
. The discretized points are represented as

xi = i∆x, where 0 ⩽ i ⩽ Nx and i is a positive integer. To approximate the solution
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u(xi, tn), we introduce the notation uni , where tn = n∆t and 0 ⩽ n ⩽ Nt. Here,
∆t = T

Nt
represents the temporal step size, and Nt is the total number of time steps.

In this paper, we use forward difference method for the inverse problem. This
method is conditionally stable and a sufficient condition for stability of the method is(

a∆t

∆x2

)2

⩽ 2.

Although we cannot claim what will happen if this condition is violated, it provides an
upper bound for stability.

3.1 Fully explicit finite difference scheme

To determine the unknown coefficient k(t), we employ the finite difference method on
the equivalent form presented in equations (6) – (9), which represent the inverse prob-
lem defined in equations (1) – (3). We adopt the same procedure as in [16], however, to
simplify the scheme, we utilize a three-point stencil rather than the five-point stencil
employed in [16]. This simplification involves denoting the second derivative as w = vxx
with its approximation given by:

wi ≈
vni+1 − 2vni + vni−1

∆x2
.

Employing central second-order approximations for both temporal and spatial deriva-
tives as

vtt ≈
vn+1
i − 2vni + vn−1

i

∆t2
, wxx ≈

wn
i+1 − 2wn

i + wn
i−1

∆x2
.

Right-hand side of Eq. (6) can be rewritten as:

k(t)ϕ(x) +

∫ t

0

k(τ)v(x, t− τ)dτ + F (x, t) ≈ knϕi +∆t
n∑

j=1

kjvn−j
i + F n

i .

The integral itself is approximated using a rectangular integration technique. Then,
fully explicit finite difference is applied,

vn+1
i = 2vni − vn−1

i +∆t2

(
−a2w(2)n

i + knϕi +∆t
n∑

j=1

kjvn−j
i + F n

i

)
, (31)

where w(2)n
i is the numerical approximation of wxx. The additional condition, v(x0, t) =

G(t), is used to determine the unknown coefficient. Here, G(t) = g′(t) and x0 is within
the range 0 to l. Let’s denote its subscript as p. Now, we rewrite the above scheme for
i = p, leading to

knϕp +∆t
n∑

j=1

kjvn−j
p = Sn, where Sn =

Gn+1 + 2Gn −Gn−1

∆t2
+ a2w(2)n

p − F n
p .

The numerical scheme for finding kn can be easily devised as

n = 0 → k0 =
Sn

ϕp

,

n = 1 → k1ϕp +∆tk1v0p = S1 → k1 =
S1

ϕp +∆tv0p
,

n = 2 → k2ϕp +∆t(k1v1p + k2v0p) = S2 → k2 =
S2 −∆tk1v1p
ϕp +∆tv0p

.
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Hence,

kn =
Sn

ϕp

for n = 0

kn =
1

ϕp +∆tv0p

(
Sn −∆t

n−1∑
j=1

kjvn−j
p

)
for n > 0.

(32)

4 Numerical results
The inverse problem (6)–(9) can be solved numerically using the finite difference
schemes (31) for v(x, t) and (32) for k(t). The results have been analyzed by cal-
culating the absolute error between the exact and numerical solutions, defined as

η(v) = max(vnumerical
i − vexacti ), i ∈ (0, Nx)

and
η(k) = max(knumerical

n − kexactn ), n ∈ (0, Nt).

The following test example is considered for the numerical accuracy check (a = 2)

F (x, t) = −18e−2t sinx+ e−t sinx,

φ(x) = sin x, ψ(x) = −2 sinx, ϕ(x) = 4 sinx, g(t) =

√
2

2
e−2t,

for x ∈ (0, l = 2π) and t ∈ (0, T = 1), G = g′(t) is determined analytically, i.e.
G =

√
2e−2t. The exact solution is given by

v(x, t) = −2e−2t sinx and k(t) = e−t.

For the additional condition, we take x0 = π/4.
Figs. 1 and 2 illustrate the numerical solution compared to the analytical solution

for both u(x, t) and k(t) over the time interval 0 to 1, showing good agreement. We
used Nx = 128 and Nt = 5000, resulting in absolute errors as shown in Fig. 3. While
opting for a higher discretization points Nx could enhance accuracy, it would inevitably
escalate computation time.

Introducing noise to an inverse problem can be advantageous as it serves to reg-
ularize the problem and mitigate overfitting. In the absence of noise, the solution to
an inverse problem tends to be highly sensitive to minor variations in the input data,
which may hinder its ability to generalize effectively to new or noisy data. By incorpo-
rating noise into the data, the inverse problem becomes more well-posed, implying that
it possesses a unique and stable solution that is less susceptible to small perturbations
in the input data. Therefore, the proposed algorithm is tested by adding noise to the
additional condition, v(x0, t) = G(t), hence

v(x0, t) = G(t)

(
1 +

P

100
ξ

)
,

where P – error in percentage, ξ – a random number from a uniform distribution over
(−1, 1). Figs. 4-6 presents the obtained numerical solutions of k(t) with noise P set to
3%, 5%, and 7%. It is evident that the finite difference scheme performs satisfactorily
as time progresses toward 1. Nevertheless, for higher noise levels, particularly when P
equals 7, the fluctuation range is initially high but stabilizes as time increases.
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Figure 1: Comparison of the nu-
merical and analytical solutions for
v(x, t).

Figure 2: Comparison of the numer-
ical and analytical solutions for k(t).

Figure 3: Estimated absolute errors
η(u) and η(k).

Figure 4: Numerical solution of k(t)
obtained with noise P=3%.

Figure 5: Numerical solution of k(t)
obtained with noise P=5%.

Figure 6: Numerical solution of k(t)
obtained with noise P=7%.

5 Conclusion

In conclusion, this work addresses the problem of identifying the kernel that represents
the memory of the medium in the integro-differential equation of forced vibrations of a
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beam. The problem is reduced to integral equations of the second kind of Volterra type
with respect to the solution of the direct problem and the unknown kernel of the inverse
problem. To solve these equations, we apply the method of compressive mappings in
the space of continuous functions with exponential weight norm. The inverse problem’s
global solvability and the solution’s conditional stability are established.

In addtion, this paper presents an efficient numerical solution for the inverse prob-
lem of the beam equation using the finite difference method. The unknown coefficient
in the equation is expressed in terms of an integral, allowing for its efficient determi-
nation alongside the solution for u(x, t). Through rigorous algorithmic development,
the numerical scheme offers accurate solutions for both u(x, t) and the unknown co-
efficient k(t). To validate the effectiveness of the proposed method, a comprehensive
test example was carefully selected. The numerical results obtained were subsequently
compared to analytical solutions, revealing a noteworthy level of agreement.

Furthermore, the performance of the proposed scheme was evaluated under noisy
conditions. It was observed that while numerical fluctuations initially exhibit signifi-
cant variance, they steadily diminish over time, demonstrating the scheme’s robustness
in handling noise and its ability to converge towards stable solutions as time evolves.
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